Search results for " Conducting Polymers"

showing 6 items of 6 documents

ELECTROCHEMICAL FABRICATION OF METAL/OXIDE/CONDUCTING POLYMER JUNCTIONS FOR ELECTRONIC DEVICES

2014

Electrochemical fabrication metal/oxide/conducting polymer junctions electronic devicesSettore ING-IND/23 - Chimica Fisica ApplicataSOLID STATE ELECTROLYTIC CAPACITORS FIELD EFFECT TRANSISTORS ANODIC OXIDES CONDUCTING POLYMERS PHOTOELECTROCHEMISTRY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY PEDOT NIOBIUM OXIDE TITANIUM OXIDE TANTALUM OXIDE
researchProduct

Review on Polymers for Thermoelectric Applications.

2014

In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates…

Materials scienceNanotechnologyReviewlcsh:TechnologyThermoelectric effectnanocompositesintrinsically conducting polymersFigure of meritGeneral Materials ScienceOrders of magnitude (data)lcsh:Microscopylcsh:QC120-168.85chemistry.chemical_classificationConductive polymerlcsh:QH201-278.5lcsh:TPolymerThermoelectric materialschemistrylcsh:TA1-2040Inorganic materialslcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971thermoelectricsMaterials (Basel, Switzerland)
researchProduct

From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells

2021

This review focuses on the overview of microbial amperometric biosensors and microbial biofuel cells (MFC) and shows how very similar principles are applied for the design of both types of these bioelectronics-based devices. Most microorganism-based amperometric biosensors show poor specificity, but this drawback can be exploited in the design of microbial biofuel cells because this enables them to consume wider range of chemical fuels. The efficiency of the charge transfer is among the most challenging and critical issues during the development of any kind of biofuel cell. In most cases, particular redox mediators and nanomaterials are applied for the facilitation of charge transfer from a…

Microbial fuel cellBioelectric Energy SourcesPolymersMicroorganismNanotechnologyBiosensing TechniquesReview02 engineering and technologyyeastbioelectronicslcsh:Chemical technology010402 general chemistry01 natural sciencesBiochemistryRedoxAnalytical ChemistryNanomaterialsmicrobial biosensorslcsh:TP1-1185microbial biofuel cells ; yeast ; direct electron transfer ; extracellular electron transfer ; cell membrane/wall modifications ; conducting polymers ; enzyme-based biofuel cells ; bioelectronics ; microbial biosensors ; whole cell-based biosensorsdirect electron transferenzyme-based biofuel cellsElectrical and Electronic EngineeringElectrodesconducting polymersInstrumentationwhole cell-based biosensorsConductive polymerBioelectronicsextracellular electron transferChemistryfungitechnology industry and agriculturefood and beveragesmicrobial biofuel cells021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencescell membrane/wall modificationsBiofuel0210 nano-technologyOxidation-ReductionBiosensorSensors
researchProduct

Electrical transport in carbon black-epoxy resin composites at different temperatures

2013

Citation: J. Appl. Phys. 114, 033707 (2013); doi: 10.1063/1.4815870 (Received 3 May 2013; accepted 27 June 2013; published online 17 July 2013) Results of broadband electric/dielectric properties of different surface area—carbon black/epoxy resin composites above the percolation threshold are reported in a wide temperature range (25–500 K). At higher temperatures (above 400 K), the electrical conductivity of composites is governed by electrical transport in polymer matrix and current carriers tunneling from carbon black clusters to polymer matrix. The activation energy of such processes decreases when the carrier concentration increases, i.e., with the increase of carbon black concentration…

PermittivityMaterials scienceAnnealing (metallurgy)General Physics and Astronomy02 engineering and technologyDielectric7. Clean energy01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsElectrical resistivity and conductivity:ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика [ЭБ БГУ]0103 physical sciences[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]Rectangular potential barrierComposite material010306 general physicsSettore CHIM/02 - Chimica Fisica[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Percolation thresholdCarbon blackEpoxy[CHIM.MATE]Chemical Sciences/Material chemistryCarbon Polymers Annealing Conducting polymersElectrical conductivity021001 nanoscience & nanotechnology[SPI.ELEC]Engineering Sciences [physics]/ElectromagnetismSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali[CHIM.POLY]Chemical Sciences/Polymersvisual_artvisual_art.visual_art_medium[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]0210 nano-technology
researchProduct

Photoelectrochemical Synthesis of Conducting Polymers on Large Band Gap Nb2O5 and Ta2O5 Anodic Oxide Films

2008

Photoelectrochemical Synthesis Conducting Polymers Nb2O5 Ta2O5 Anodic Oxide Films
researchProduct

Photoelectrochemical Synthesis of Polypyrrole on Anodic Ta2O5 Films

2007

Polypyrrole film was photoelectrochemically grown on insulating Ta2O5 anodic film in acetonitrile solution. A characterization by photocurrent spectroscopy PCS of metal/oxide/polypyrrole interface was carried out. The PCS results suggest that a metallic-like PPy is formed under illumination at constant anodic potential. By polarizing the polypyrrole at cathodic potentials a photocurrent spectrum typical of p-type semiconducting film was recorded. A scanning electron microscopy study of PPy surfaces solution side and oxide side allowed us to obtain information on the morphology of the polymer as well as a rough estimate of the film thickness and of the diameter of PPy globules at the two int…

Settore ING-IND/23 - Chimica Fisica ApplicataCONDUCTING POLYMERSTHICKNESSMETALSFIELD-EFFECT TRANSISTORSFIELD-EFFECT TRANSISTORS; CONDUCTING POLYMERS; GENERATION; TANTALUM; METALS; THICKNESS; OXIDATIONOXIDATIONTANTALUMGENERATION
researchProduct